
主讲教师：汪红松

数据结构
（C语言版）（第2版）

线性表

教 学 内 容

1

2

3

4

5

线性表基本概念及顺序存储表示

顺序表基本操作

线性表的单链表表示与实现

线性表的循环链表表示与实现

线性表的应用

Contents

链式存储结构

结点在内存中的位置是任意的，即

逻辑上相邻的数据元素在物理上不

一定相邻

例 画出26 个英文字母表的链式存储结构

链式存储结构：
逻辑结构：（ a, b, … ,y, z）

ahead b /\z……

各结点由两个域组成：
数据域：存储元素数值数据；
指针域：存储直接后继结点的存储位置。

指针数据

结点只有一个指针域的链表，称为单链表或线性链表

头指针、头结点和首元结点

头指针是指向链表中第一个结点的指针。

头结点是在链表的首元结点之前附设的一个结点；数据域内只
放空表标志和表长等信息。

首元结点是指链表中存储第一个数据元素a1的结点。

头指针 头结点 首元结点

a1head a2 …info an ^

一、链表

结点在存储器中的位置是任意的，即逻辑上相邻的数
据元素在物理上不一定相邻。

访问时只能通过头指针进入链表，并通过每个结点的
指针域向后扫描其余结点，所以寻找第一个结点和最
后一个结点所花费的时间不等。

　这种存取元素的方法被称为链式存取法

(1)

(2)

一、链表

（1）优点

– 数据元素的个数可以自由扩充；

– 插入、删除等操作不必移动数据，只需修改

链接指针，修改效率较高。

一、链表

（2）缺点
存取效率不高，必须采用顺序存取，即存取
数据元素时，只能按链表的顺序进行访问
（顺藤摸瓜）

一、链表

typedef struct Lnode

{

 ElemType data; //数据域

 struct LNode *next; //指针域

}LNode, * LinkList;

// *LinkList 为 Lnode 类型的指针

二、单链表

初始化

0
1

0
2

0
3

0
4

0
5

取值

查找 插入

删除
基本操作

的实现

二、单链表

【算法步骤】

【算法描述】

Status InitList_L(LinkList &L){

 L=new LNode;

 L->next=NULL;　　　　　

 return OK;

}

① 生成新结点作头结点，用头指针L指向头结点。

② 头结点的指针域置空。 L

二、单链表

L

 21 18 30 75 42 56 ∧

p p pj 123 p

i=3 i=15

p

例：分别取出表中i=3和i=15的元素

ü从第1个结点（L->next）顺链扫描，用指针p指向当前扫描到的结点，p初
值p = L->next。

ü j做计数器，累计当前扫描过的结点数，j初值为1。

ü当p指向扫描到的下一结点时，计数器j加1。

ü当j = i时，p所指的结点就是要找的第i个结点。

【算法步骤】

线性表的重要基本操作

p p4567

//获取线性表L中的某个数据元素的内容

Status GetElem_L(LinkList L,int i,ElemType &e){

 p=L->next;j=1; //初始化

 while(p&&j<i){ //向后扫描，直到p指向第i个元素或p为空

 p=p->next; ++j;

 }

 if(!p || j>i)return ERROR; //第i个元素不存在

 e=p->data; //取第i个元素

 return OK;

}//GetElem_L

二、单链表

L

21 18 30 75 30 56 ∧

p
j 1

x=30

23 找到，返回i

x=51

456 未找到，返回0

ü从第一个结点起，依次和e相比较；

ü如果找到一个其值与e相等的数据元素，则返回其在链表中
 的“位置”或地址；

ü如果查遍整个链表都没有找到其值和e相等的元素，则返回0
 或“NULL”。

7

二、单链表

//在线性表L中查找值为e的数据元素

LNode *LocateELem_L (LinkList L，Elemtype e) {

 //返回L中值为e的数据元素的地址，查找失败返回NULL

 p=L->next;

 while(p &&p->data!=e)

 p=p->next;

 return p;

}

【算法描述】

线性表的重要基本操作

//在线性表L中查找值为e的数据元素

int LocateELem_L (LinkList L，Elemtype e) {

 //返回L中值为e的数据元素的位置序号，查找失败返回0

 p=L->next; j=1;

 while(p &&p->data!=e)

 {p=p->next; j++;}

 if(p) return j;

 else return 0;

}

【算法描述】

线性表的重要基本操作

【算法步骤】

找到ai-1存储位置p
；

线性表的重要基本操作

01
OPTION

02
OPTION

03
OPTION

新结点*s的指针域指向结
点ai；

令结点*p的指针域指向新
结点*s。将新结点*s的数据域置为x；

生成一个新结点*s；

04
OPTION

05
OPTION

将值为x的新结点插入到表的第i个结点的位置上，即插入到ai-1与ai
之间。

//在L中第i个元素之前插入数据元素e
Status ListInsert_L(LinkList &L,int i,ElemType e){
 p=L;j=0;
 while(p&&j<i−1){p=p->next;++j;} //①寻找第i−1个结点
 if(!p||j>i−1)return ERROR; //i大于表长 + 1或者小于1
 s=new LNode; //②生成新结点s
 s->data=e; //③将结点s的数据域置为e
 s->next=p->next; //④将结点s插入L中
 p->next=s; //⑤
 return OK;
}//ListInsert_L

【算法描述】

线性表的重要基本操作

1）找到ai-1存储位置p；

2）保存要删除的结点的值；

3）令p-＞next指向ai的直接后继结点；

4）释放结点ai的空间。

① 将表的第i个结点删去；

② 步骤：

二、单链表

//将线性表L中第i个数据元素删除
 Status ListDelete_L(LinkList &L,int i,ElemType &e){
 p=L;j=0;
 while(p->next &&j<i-1){ //①寻找第i个结点，并令p指向其前驱
 p=p->next; ++j;
 }
 if(!(p->next)||j>i-1) return ERROR; //删除位置不合理
 q=p->next; //②临时保存被删结点的地址以备释放
 p->next=q->next; //③改变删除结点前驱结点的指针域
 e=q->data; //保存删除结点的数据域
 delete q; //④释放删除结点的空间
 return OK;
}//ListDelete_L

【算法描述】

二、单链表

如果要在单链表中进行前插或删除操作，由于要从头查
找前驱结点，所耗时间复杂度为 O(n) 。

三、链表的运算时间效率分析

1. 查找: 因线性链表
只能顺序存取，即
在查找时要从头指
针找起，查找的时
间复杂度为 O(n)。

2. 插入和删除: 因线
性链表不需要移动元
素，只要修改指针，
一般情况下时间复杂
度为 O(1)。

